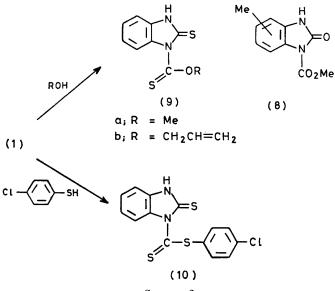

The Chemistry of *o*-Phenylenedi-isothiocyanate. Part 3.¹ Studies on the Syntheses of Heterocyclic Compounds

By David Griffiths, Roy Hull,* and Timothy P. Seden, Imperial Chemical Industries Limited, Pharmaceuticals Division, Alderley Park, Macclesfield, Cheshire SK10 4TG

o-Phenylenedi-isothiocyanate (1) reacts with sodium azide to give [1,2,4]thiadiazolo[4,5a]benzimidazole-3thione (2), which undergoes alkylation to the S-alkyl derivatives (5a—d). With N-(4-chlorophenyl)-SSdimethylsulphimide the di-isothiocyanate (1) yields the corresponding N-arylthiadiazolo-derivative (7). Alcohols and thiophenol react with (1) and give alkoxy- or (arylthio)-thiocarbonylbenzimidazolinethiones (9a and b) and (10). The di-isothiocyanate also reacts with chloromethanesulphonamide and yields a dithiadiazepine S-dioxide (13) along with benzimidazolyl disulphide (12).

THIS paper describes a number of miscellaneous reactions of o-phenylene di-isothiocyanate. It supplements the earlier work on simple nitrogen nucleophiles, and extends our knowledge of intramolecular ring-closure reactions² of the di-isothiocyanate (1) with sodium azide in aqueous dimethoxyethane gave a product $C_8H_5N_3S_2$ [m/e 207 (M^+)] accompanied by loss of nitrogen. The reaction sequence is envisaged as addition of the azide nucleophile

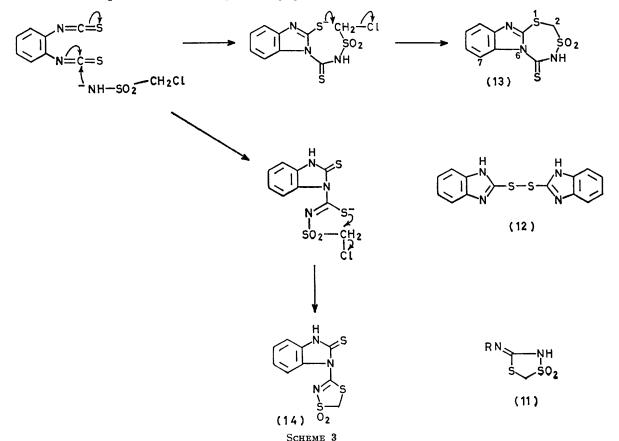

SCHEME 1

brought about by the second neighbouring isothiocyanate group.

RESULTS AND DISCUSSION

Isothiocyanates react with sodium azide to give substituted tetrazolinethiones.³ We found that treatment to an isothiocyanate radical accompanied by a concerted cyclisation with elimination of nitrogen to yield the thiadiazolobenzimidazolethione (2) (Scheme 1). Two alternative structures [(3) and (4)] could be considered as possibilities for the product, $C_8H_5N_3S_2$. Structure (3) could arise as a result of nitrene formation from the de-

composition of the intermediate thiocarbonylazide, followed by an insertion into the benzenoid nucleus,⁴ and structure (4) by a Curtius-type rearrangement



SCHEME 2

followed by ring-closure to the thiadiazolobenzimidazolethione. The n.m.r. spectrum of the compound, $C_8H_5^-$

aromatic protons. We consider that the deshielding effect of the thiocarbonyl group on the appositely situated proton H-5 is consistent with the assigned formula (2) rather than the isomer (4). The n.m.r. spectrum of an alkylation product of the thione, e.g. the methylthioderivative (5a), showed the proton H-5 now at 8 7.9, with the remainder of the aromatic protons (three) in the range δ 7.4–7.6. It is of interest to compare these results with those which would have been expected from the published chemistry of thiocarbonylazides,⁵ where either ring closure takes place to yield thiatriazoles, or recourse is needed to photolysis of the thiatriazole to induce a rearrangement to an isothiocyanate, perhaps by way of a thioacyl azide.⁶ The thione (2) was also alkylated with ethyl bromoacetate, 2-bromoethanol, and 4bromophenacyl bromide, which yielded the S-substituted derivatives (5b—d) respectively.

Sulphonium ylides are known to act as nucleophiles;⁷ however, no reactions of sulphimides with isothiocyanates appear to have been reported. N-(4-Chlorophenyl)-SS-dimethylsulphimide (6), prepared according to the method of Claus and Vycudilik,⁸ and the diisothiocyanate (1) reacted spontaneously in acetonitrile at room temperature to give, with the elimination of dimethyl sulphide, the thiadiazolobenzimidazolethione (7). The product was probably formed by the mech-

 N_3S_2 showed a downfield aromatic proton at δ 8.85 and three aromatic protons in the range δ 7.7–8.0, thereby eliminating structure (3) which possesses only three

anism shown in Scheme 1.

It has been reported that *o*-tolylene di-isocyanate, when treated with methanol, cyclised to the allophanoyl

derivative (8).⁹ We found that the di-isothiocyanate (1) reacted with methanol, allyl alcohol, and p-chlorothiophenol to yield three related derivatives, (9a and b) and (10), respectively (Scheme 2).

Zbirovsky and Seifert 10 have shown that the reaction of aromatic and aliphatic isothiocyanates with chloromethanesulphonamide¹¹ in the presence of an equimolar amount of an alkali-metal hydroxide gave rise to 5-(substituted imino)-1,3,4-dithiazolidine 3,3-dioxides (11). The corresponding reaction of the di-isothiocyanate (1) with chloromethanesulphonamide was therefore tried. We obtained two products in similar yields (20%). The first was the benzimidazolyl disulphide (12) which was identical (m.p. and i.r.) with an authentic sample.¹² The second product analysed for C₉H₇N₃- O_2S_3 [m/e 285 (M⁺)] which could be represented by the dithiadiazepine (13) or the 1-substituted benzimidazoline-2-thione (14) (Scheme 3). An n.m.r. study provided the necessary proof of structure (13). The proton H-7, deshielded by the apposite thiocarbonyl group at position 5, was downfield at $\delta 8.3$ and separate from the remainder of the aromatic protons centred at δ 7.3 indicating structure (13) rather than (14).

EXPERIMENTAL

N.m.r. spectra were obtained with a Varian HA 100 spectrometer (SiMe₄ internal standard). Mass spectra were measured with a Hitachi RMV 6E or A.E.I. MS9 spectrometer. M.p.s were determined with a Reichert hot-stage apparatus.

[1,2,4] Thiadiazolo[4,5-a] benzimidazole-3-thione (2).—A solution of the di-isothiocyanate (1) (1.74 g, 0.009 mol) in dimethoxyethane (20 ml) was added dropwise to a solution of sodium azide (0.8 g, 0.012 mol) in water-dimethoxyethane (1 : 1) (80 ml). After the initial effervescence had ceased the now cloudy solution was stirred at ambient temperature for 2 h. The solvent was evaporated off and the residue dissolved in water, filtered, then acidified with 2N hydrochloric acid, which precipitated a gelatinous solid. The product was filtered, washed with water and vacuumdried (1.2 g, 64%), m.p. 175 °C (decomp.) (Found: C, 46.5; H, 2.5; N, 20.6. $C_8H_5N_3S_2$ requires C, 46.4; H, 2.4; N, 20.3%); m/e 207 (M^+); δ [CF₃CO₂H] 7.7—8.0 (3 H, m, H-6—8), and 8.85 (1 H, m, H-5).

General Method for Alkylation of (2).—3-Methylthio-[1,2,4]thiadiazolo[4,5-a]benzimidazole (5a). The thione (2) (1.5 g, 0.007 mol) was suspended in acetonitrile (15 ml) and a few drops of 2N sodium hydroxide were added to complete dissolution. Iodomethane (1.5 ml, 0.021 mol) was then added dropwise to the stirred solution. A pale yellow solid precipitated out during the addition, and after completion of the addition the mixture was stirred at ambient temperature for 1 h. The solvent was evaporated and the residue triturated with water and filtered off. The crude *product* was crystallised from methanol (0.75 g, 48%), m.p. 146 °C (Found: C, 49.0; H, 3.1; N, 18.6; S, 29.2. C₉H₇-N₃S₂ requires C, 48.8; H, 3.2; N, 19.0; S, 28.9%); *m/e* 221 (M^+); δ [(CD₃)₂SO] 2.85 (3 H, s, Me), 7.4 (2 H, m, H-6, -7), 7.6 (1 H, m, H-8), and 7.9 (1 H, m, H-5).

The following compounds were prepared similarly: compound (5b), using 1.5 equiv. of ethyl bromoacetate, 16%yield, m.p. 164 °C (EtOH) (Found: C, 49.3; H, 3.4; N, 14.0; S, 21.5. $C_{12}H_{11}N_3O_2S_2$ requires C, 49.3; H, 3.8; N,

J.C.S. Perkin I

14.3; S, 21.8%); m/e 293 (M^+); δ [CDCl₃] 1.35 (3 H, t, Me), 4.25 (2 H, s, SCH₂), 4.3 (2 H, q, CO₂CH₂), 7.4 (2 H, m, H-6, -7), and 7.9 (2 H, m, H-5, -8): compound (5c), using 1.5 equiv. of 2-bromoethanol, 34% yield, m.p. 153 °C (CH₃CN) (Found: C, 48.1; H, 3.6; N, 16.8; S, 25.3. C₁₀H₉N₃OS₂ requires C, 47.8; H, 3.6; N, 16.7; S, 25.5%); m/e 251 (M^+); δ [(CD₃)₂SO] 3.55 (2 H, m, SCH₂), 3.8 (2 H, m, CH₂O), 5.2 (1 H, t, OH), 7.4 (2 H, m, H-6, -7), 7.8 (1 H, m, H-8), and 8.0 (1 H, m, H-5): compound (5d), using 1.5 equiv. of 4-bromophenacyl bromide, 40% yield, m.p. 195 °C (CH₃CN) (Found: C, 47.2; H, 2.4; N, 10.4; S, 15.5. C₁₆H₁₀BrN₃OS₂ requires C, 47.5; H, 2.5; N, 10.4; S, 15.8%); m/e 403 (M^+); δ [CDCl₃] 5.15 (2 H, s, CH₂), 7.6—8.0 (7 H, m, aromatics), and 8.25 (1 H, m, H-5).

2-(4-Chlorophenyl)[1,2,4]thiadiazolo[4,5-a]benzimidazole-3-thione (7).—A solution of N-(4-chlorophenyl)-SS-dimethylsulphimide ⁸ (1.3 g, 0.007 mol) in acetonitrile (20 ml) was added to a stirred filtered solution of the di-isothiocyanate (1) (1.3 g, 0.007 mol) in acetonitrile (20 ml). The immediate precipitate was filtered off and washed with acetonitrile which yielded the product as cream *needles* (1.3 g, 59%), m.p. 198 °C (Found: C, 52.9; H, 2.5; N, 12.9; S, 20.2. $C_{14}H_8CIN_3S_2$ requires C, 53.0; H, 2.5; N, 13.3; S, 20.1%); *m/e* 317 (*M*⁺); δ [(CD₃)₂SO] 7.3 (4 H, q, non-fused aromatics), 7.4 (3 H, m, fused aromatics), and 8.2 (1 H, m, H-5).

O-Methyl 2-Thioxo-2,3-dihydrobenzimidazole-1-carbothioate (9a).—A solution of the di-isothiocyanate (1) (2.2 g, 0.01 mol) in methanol (15 ml) was refluxed for 2.5 h, cooled and the crystalline product was filtered off (1.5 g, 61%), m.p. 130—131 °C (40% aqueous MeOH) (Found: C, 48.1; H, 3.6; N, 12.0. C₉H₈N₂OS₂ requires C, 48.2; H, 3.6; N, 12.5%). δ [(CD₃)₂SO] 4.4 (3 H, s, Me) and 7.2—7.8 (5 H, m, aromatics + NH).

Similarly prepared was (9b) using allyl alcohol, in 60% yield, m.p. 159 °C (cyclohexane) (Found: C, 52.9; H, 3.9; N, 11.1. $C_{11}H_{10}N_2OS_2$ requires C, 52.8; H, 4.0; N, 11.2%); m/e 250; δ [CDCl₃] 3.75 (2 H, d, OCH₂), 5.35 (2 H, m, =CH₂), 6.0 (1 H, m, CH), 7.25 (3 H, m, H-4—6), and 8.2 (1 H, m, H-7).

4-Chlorophenyl 2-Thioxo-2,3-dihydrobenzimidazole-1-carbodithioate (10).—A filtered solution of the di-isothiocyanate (1) (0.89 g, 0.004 6 mol) in acetonitrile (15 ml) was added to a solution of 4-chlorothiophenol (0.67 g, 0.004 6 mol) in acetonitrile (10 ml) and the resulting solution was left at ambient temperature for 4 days. The product was then filtered off as orange prismatic *needles* (0.3 g, 20%), m.p. 165—166 °C (Found: C, 49.7; H, 2.6; N, 8.4. C₁₄H₉ClN₂-S₃ requires C, 50.0; H, 2.6; N, 8.3%); δ [(CD₃)₂SO] 7.2 (4 H, m, fused aromatics) and 7.55 (5 H, s, benzenoid aromatics + NH).

5-Thioxo-4,5-dihydro-2H-benzimidazo[1,2-d][1,6,2,4]-

dithiadiazepine 3,3-Dioxide (13).—Chloromethanesulphonamide ¹¹ (2.0 g, 0.015 5 mol) was added to a filtered solution of the di-isothiocyanate (1) (3.0 g, 0.015 5 mol) in acetone (75 ml). Then a solution of sodium hydroxide (0.9 g, 0.023 mol) in water (9 ml) was added dropwise to the stirred solution which darkened, and stirring was continued for 18 h at ambient temperature. The white solid which precipitated was filtered off and washed with acetone to yield the disulphide (12) (0.8 g, 18%). The m.p. (230 °C) and i.r. spectrum of the disulphide were identical to those of an authentic sample.¹² The filtrate was acidified with 1N hydrochloric acid and the pink precipitated product was filtered off, washed with water, and dried (0.9 g, 20%), m.p. 285—290 °C (Found C, 38.4; H, 2.5; N, 14.6. C₉H₇N₃- O_2S_3 requires C, 38.9; H, 2.5; N, 14.7%), m/e 285 (M⁺); δ [(CD₃)₂SO] 4.8 (2 H, s, CH₂), 7.3 (3 H, m, H-8-10), and 8.3 (1 H, m, H-7).

[0/128 Received, 24th January, 1980]

REFERENCES

¹ Part 2, A. W. Faull, D. Griffiths, R. Hull, and T. P. Seden, J.C.S. Perkin I, 1980, 2587. ² B. Schulze, M. Mühlstädt, and I. Schubert, Z. Chem., 1979,

19, 41.

³ R. Stolle, J. prakt. Chem., 1932, **133** (2), 60; R. Neidlein and J. Tauber, Chem. Ber., 1967, **100**, 736; R. G. Dubenko and V. D. Panchenko, Khim. geterotsikl. soedin., Sb.1: azotsoderzhashchie

Geterotsikly, 1967, 199 (Chem. Abs., 1969, 70, 87687w). ⁴ T. L. Gilchrist and C. W. Rees, 'Carbenes, Nitrenes and Arynes,' Nelson, London, 1969, p. 92. ⁵ W. Lwowski, 'The Chemistry of the Azido Group,' ed. S. Data: Joseph Longington, 1967, 1978, 2019

Patai, 1971, Interscience, London, p. 507.

 ⁶ W. Kirmse, Angew. Chem., 1959, 71, 381.
⁷ T. L. Gilchrist and C. J. Moody, Chem. Rev., 1977, 77, 409. ⁸ P. Claus and W. Vycudilik, Tetrahedron Letters, 1968, 32,

3607.

 ⁹ W. J. Schnabel and E. Kober, J. Org. Chem., 1969, **34**, 1162.
¹⁰ M. Zbirovsky and R. Seifert, Coll. Czech. Chem. Comm., 1977, 42, 2672.

¹¹ T. B. Johnson and I. B. Douglass, J. Amer. Chem. Soc., 1941, 63, 1571.

¹² W. Knobloch and K. Rintelen, Arch. Pharm., 1958, 291, 180.